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COMMENT 
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Abstract. Correlation identities for the Potts model are obtained, and the usual mean-field 
approximation is derived from the identities by neglecting correlations. This derivation is 
not only clear in its physical meaning but also independent of the representation. These 
identities may also serve as a starting point for other approximations. As an example, the 
application of the exponential operator technique is considered. 

Recently, there has been much interest in the q-state Potts model (Potts 1952), which 
is a generalisation of the Ising model, largely because the model has proven to be rich 
in its contents. It is known that the Potts model is related to a number of outstanding 
problems in lattice statistics such as vertex models and percolation (for references, see 
Wu 1982). It has also been recognised that it is possible to realise this model in 
experiments, for example, ordered adsorbed monolayers. Unfortunately, however, 
the exact solution of the general q-state Potts model is not yet known except for the 
celebrated Onsager solution (Onsager 1944) of the q = 2  (Ising) model in d = 2  
dimensions. Although some information has been obtained through the use of duality 
relations, series expansions and renormalisation group studies, it is also of some interest 
to examine the model in the mean-field approximation (Kihara et al 1954) which is 
known to be correct in the q + CO limit (Mittag and Stephen 1974). 

In this comment, we obtain correlation identities for the Potts model, and show 
how the usual mean-field approximation can be derived from them. Also, we apply 
the exponential operator technique (Honmura and Kaneyoshi 1978, 1979, Taggart 
and Fittipaldi 1982) to those identities. 

We start with the Potts Hamiltonian 

where each spin uj ( i  = 1,2 ,  . . . , N )  on lattice sites can take q possible states, S is the 
Kronecker delta, Jij is the interaction strength between sites i and j ,  and {; is the 
symmetry breaking field on site i. Roman characters (i, j ,  k, I )  and Greek characters 
( A ,  p, v) are used for labelling sites and spin states, respectively. Now we consider the 
ensemble average 

where Tr implies the sum over all possible q N  states, i.e., Tr = E,,, = Eul Z u 2 .  . . E.,,, 
and Z = Tr eCPH is the partition function. We note that the Hamiltonian can be 
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separated into two parts 

H=-CEA k a A q  - Ak, 
A 

where Ek and Ak  are given by 

( 3 )  

In the above equations, primes restrict the summation indices not equal to k. Also 
we note that neither E; nor Ak  contain (Tk. With the notation 

T r ’ = z  . . .  1 1 . . .E,  
u k - l  u k + l  

the right-hand side of equation (2) becomes 

z-’ Tr‘ 1 ( ~ p u k - a v ~ , )  exp[Px~E;a~u,]  exp(PAk) 
uk 

=Z-’ Tr’ [exp(PEt )-exp(PEL)] exp(PAk) 

=Z-’Tr’tanh&(EC -EL)[exp(PEC)+exp(PEc)] exp(PAk) 

=z-’ Tr’ 1 (apuk + & U k )  tanh tP(Et  -EL) exp(pxAEhkSAuk) exp(PAk), 
u k  

which leads to the desired identity, i.e., 

( ~ , u k - ~ , u k ) = ( ( ~ , u k + ~ , u k ) t a n h ~ ~ ( ~ C  -EL)). ( 5 )  

It is straightforward to write the above identity in the more general form 

( ( 8 p u k  - a u u k ) f k )  = ( (6puk + a v u k ) f k  tanh $ P(Ef  - E ;  ( 6 )  
where fk is an arbitrary function of the Potts variables so long as it is not a function 
of site k. Equation (6) is essentially a generalisation of the identity for the Ising model 
obtained by Callen (1963) and Suzuki (1965). 

By the same procedure, we can obtain other identities, as for example 

( (apuk -b aVU, ) fk)  = ((apuk - SVUk)fk coth $ ( E :  + EL )> (7) 

( (8pukapul - avukSuu, ) fk l )  

= (( Spukapul + avukSvu,)fkI tanh iP[Et  + E? - E  L - E 

- J k l ( S p u ~ + ~ p U ~ - S ” U k - S ~ U ~ ) l ) ~  (8) 
where f k l  does not contain sites k and 1. Equation (7) is just the inverse relation of 
equation (6). 

Equation ( 5 )  may serve as a starting point for some approximations. The simplest 
one consists in neglecting correlations and replacing SAuk by its average (aAuk) = x i .  
We then obtain 

X i - X L  = ( X : + X L ) t a n h i P [ 1 J k j ( X ~ - X l ) + ( i T - i ; ) ] ,  i 

or equivalently, 

This is just the mean-field approximation of the Potts model, which obtains from a 
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minimisation of the mean-field free energy 

with the constraint L;, X A  x? = 1. If 6: = h and S k̂ f 0 for A # 1,  then we get equation 
(9) in the simple familiar form 

( 1 1 )  
where we have assumed translational invariance and defined the order parameter m 
via the relations 

In {[l + ( q -  l )m]} / ( l -  m)] = zpJm +ph, 

x: = [ I +  ( 4  - l)mI/q x; = ( l - m ) / q  ( A  # 1) .  (12) 

In deriving equation (1 1) we have also assumed 
J for z nearest neighbours 
0 otherwise. 

Jk] = 

We now use the exponential operator technique, which is based on the identity 

tanh A = eAD tanh  XI,=^ (14) 
with D = a/ax. In the absence of the external field, equation ( 5 )  becomes 

2 

(apuo- G,,) = ((a,,,+ LJ n [ I  - (awu, + a",,) +a,,, exp($JD) + a,, exp(-tPJD/2)1 
] = 1  

> tanh (16) 
Although equation (16) is exact, it has only a finite number of terms and contains no 
correlations of order higher than z + 1. If we assume translational invariance and 
neglect correlations, through the use of equation (12) we can approximate equation 
(16) and obtain the expression for the order parameter as a function of temperature 

where the coefficients Cn(t ,  q ;  P )  can be obtained through the explicit evaluation of 
equation (16). Since this technique, when applied to the Ising model, gives more 
precise results than the usual mean-field approximation (Honmura and Kaneyoshi 
1978, 1979, Taggart and Fittipaldi 1982), equation (17) is expected to be an improve- 
ment over the mean-field result given by equation ( 1  1).  

In summary, we have obtained correlation identities for the Potts model, and have 
shown how the mean-field approximation can be derived from them. These arguments, 
which are physically clear and independent of the representation, can serve as a starting 
point for some improved approximations. 
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